An Example of a Thorough Work Hazard Analysis

Rolf Ent Physics Division

Hall C Schedule

· Thru January 25, 2005

HMS + SOS Runs

January 26-June 01, 2005

HKS Installation

June 02-August 31, 2005

HKS Runs

September-November 2005

HKS Deinstallation,

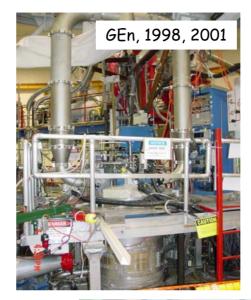
GO Reinstallation

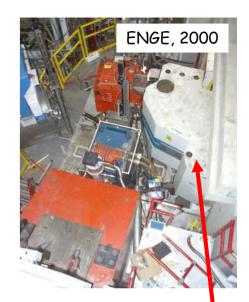
December 2005

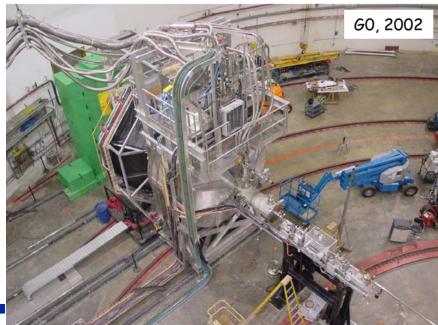
GO Engineering Run

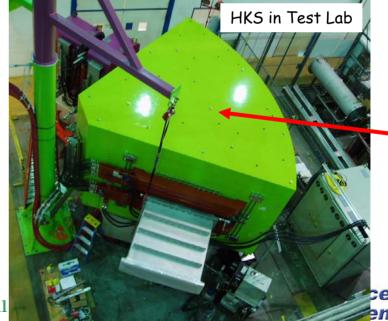
January-June 2006

GO Backward Run






Home of the Large Installations



U.S. DEPARTMENT OF ENERGY

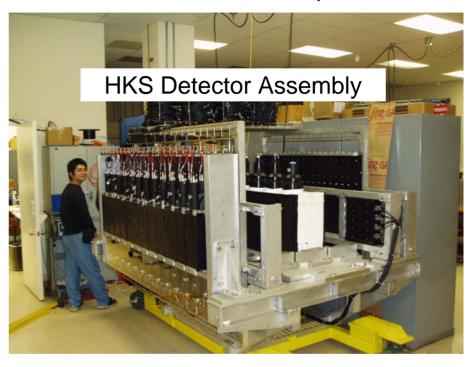
National

Process after Experiment Approval

- · Readiness Reviews are required for all major installation experiments. The process is described in EH&S Manual Chapter 3120.
- Assure that the experiment will have a high probability of being scientifically successful and operating in an efficient and safe manner.
- The "HKS" experiment: new HKS spectrometer (Tohoku University) and beam line (JLab), existing ENGE spectrometer (Hampton University, also used in 2000 experiment).
- 1st HKS Readiness Review: November 19, 2001
 - Before the construction phase of the major new equipment
 - Committee: Roger Carlini, Hari Areti, John Domingo, Dave Kashy,
 Stan Kowalski (MIT), John Lerose, Stan Majewski, Philip Pile (BNL),
 Greg Smith
 - Many findings on spectrometer/magnet design and optics, detector systems, beam associated backgrounds, cost & schedule, installation, manpower
 - EH&S Example: Monte-Carlo simulation recommended to understand radiation backgrounds induced by downstream beam line chicane.

Process after Experiment Approval

- · 2nd HKS Readiness Review: May 13, 2003
 - Before the request for scheduling
 - Committee: Roger Carlini, Hari Areti, Butch Dillon-Townes,
 Howard Fenker, Gregg Franklin (CMU), Bert Manzlak, Paul Ulmer (ODU)
 - No major "show stopper" issues or concerns, experiment appears on track for a possible installation as early as Spring/Summer 2004.
 - "Punch list" of concerns and issues to resolve
 - EH&S Example of Concern: "only a very sketchy outline of downstream beam line instrumentation was presented" → Accelerator Division picks up beam dump line design & engineering
 - EH&S Example of Issue: "The collaboration needs to complete a full GEANT simulation of backgrounds including low-energy backgrounds produced from target generated secondary particles that interact in the magnet iron."



HKS Status - December 2004

Last preparations for HKS installation underway

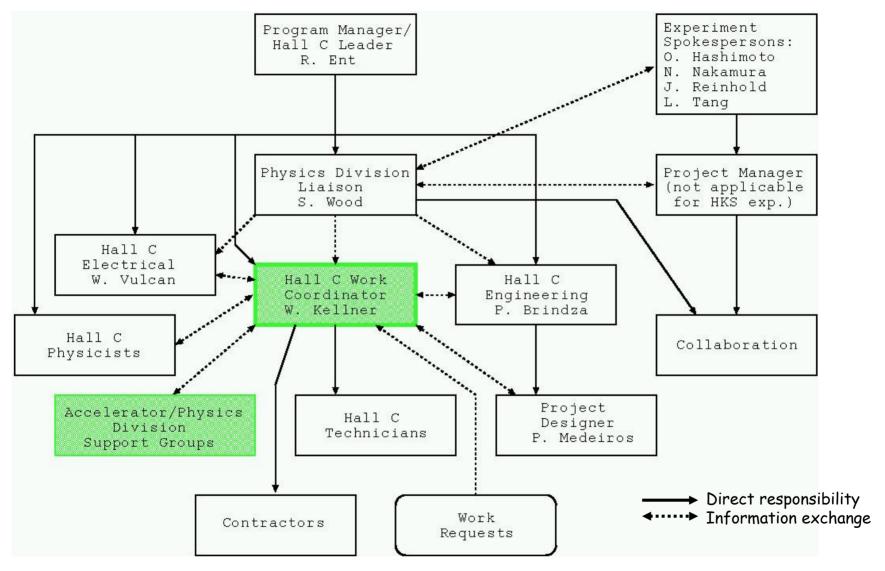
Ongoing work: finalize assembly of sieve systems (JLab)
construction of beam dump line and new DZ magnet (Accel. Division)
relocate/assemble remaining two aerogel detectors (Collaboration)
finalize analysis software (Collaboration)

Process After Experiment Approval

- 3rd HKS Readiness Review: December 09, 2004
 - Before/during the installation phase of the major new equipment
 - Emphasis is on EH&S, documentation, and operations
 - Draft Experiment Safety Assessment Document reviewed,
 Radiation Safety Assessment Document reviewed, draft operating procedures reviewed
 - Committee: Franco Garibaldi (INFN), Erik Abkemeier, Ed Daly,
 Mike Epps, Dave Mack, Bert Manzlak, Steve Williamson (UIUC)
 - No major show stoppers found, HKS should be ready to run in June.
 - EH&S Examples: review final design beam dump line to address shielding/airborne radiation and beam diagnostics concerns, add interlock on door to ENGE detector hut to turn off magnet power, need to develop checklists, etc.
- Note: if specialized equipment such as new superconducting magnets or new cryogenic targets are used, they get separate safety reviews. This was not applicable for the HKS experiment.

Process Before/During Installation

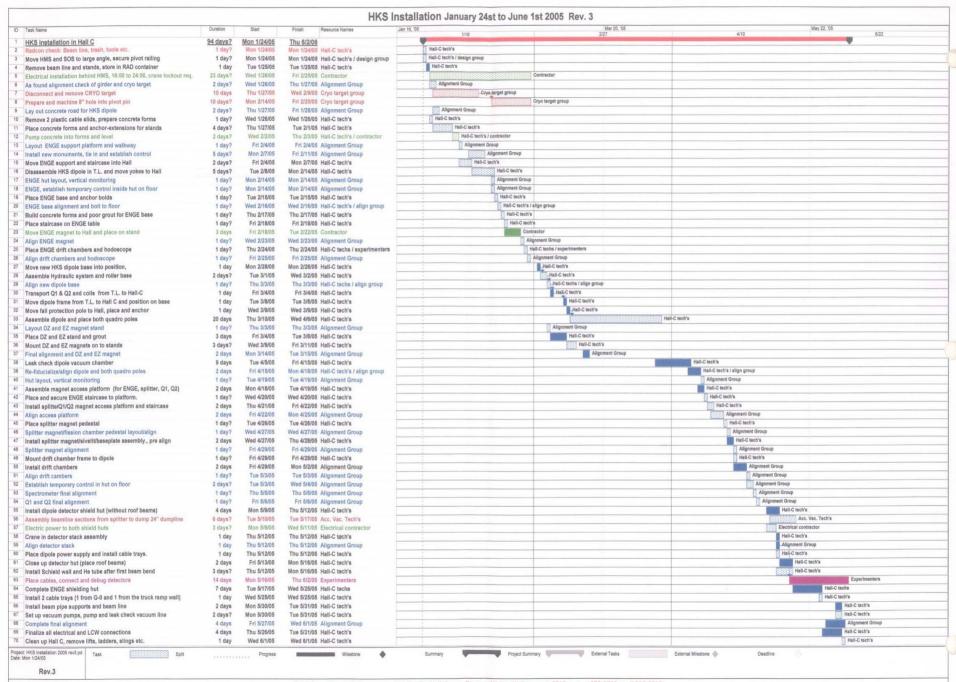
- HKS Preparation Meetings called by Hari Areti with mix of people from Accelerator Division and Hall C.
 - —Agenda items: Status of diagnostics work, safety systems (PSS/MPS), mechanical work, installation schedule
 - -Exchange of e-mails and beam commissioning plan


Process Before/During Installation

- HKS Preparation Meetings called by Hari Areti with mix of people from Accelerator Division and Hall C.
 - Agenda items: Status of diagnostics work, safety systems (PSS/MPS), mechanical work, installation schedule
 - -Exchange of e-mails and beam commissioning plan
- Special Conduct Of Operations for Hall C Installations
 - -Revised from earlier version for 7-month 60 installation (2002).
 - Outlines single point of contact for installation work in Hall: Walter Kellner
 - —Weekly Hall C meetings to go over progress plus discuss EH&S issues
 - —Daily meeting of Walter with technicians working in Hall to give job-specific training and discuss safety issues

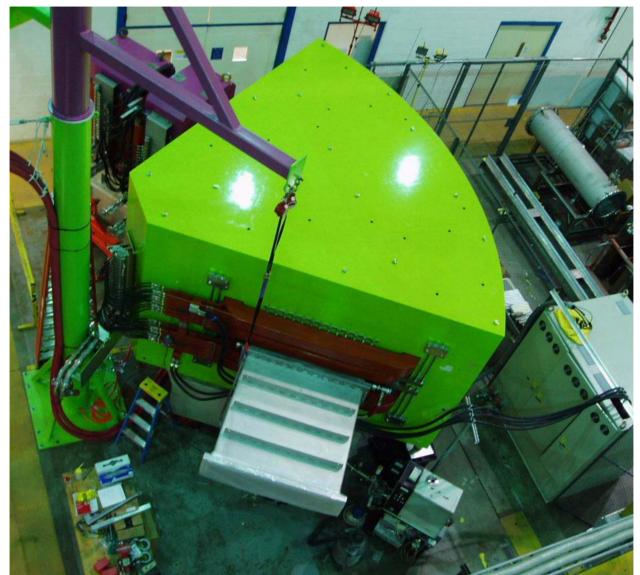
Organizational Structure of Hall C during HKS Installation

Everybody needs to read & sign new Conduct Of Operations before working in Hall C


Process Before/During Installation

- HKS Preparation Meetings called by Hari Areti with mix of people from Accelerator Division and Hall C.
 - Agenda items: Status of diagnostics work, safety systems (PSS/MPS), mechanical work, installation schedule
 - Exchange of e-mails and beam commissioning plan
- Special Conduct Of Operations for Hall C Installations
 - Revised from earlier version for 7-month 60 installation (2002).
 - Outlines single point of contact for installation work in Hall: Walter Kellner
 - Weekly Hall C meetings to go over progress plus discuss EH&S issues
 - Daily meeting of Walter with technicians working in Hall to give jobspecific training and discuss safety issues
- Installation Schedule incorporating known work requests made to Walter Kellner
 - First item is always RadCon check of any beam line components that will need to be moved out of the Hall (indicated with special "RadCon" color on installation schedule)
 - Normally, a preparatory meeting is scheduled with personnel of various groups to go over schedule before installation work starts, for HKS this was integrated in the HKS Preparation Meetings of above.

Work Hazard Identification 32



- Installation Schedule (draft only, this is a working document) has 70 entries at present.
- EH&S and Hall C personnel identify potential high-risk jobs, and produce (in collaboration) a Hazard Identification Worksheet and subsequently a Task Hazard Analysis for these specific tasks.
- Highest-risk mechanical task: HKS spectrometer move from Test Lab to Hall C.
- Highest-risk electrical task: Connect to new Electrical Panel after 2MVA Power Upgrade work in Hall is complete.

Task: HKS needs to move from Test Lab to Hall C

HKS Assembly in Test Lab (Dec. 2003)

(Note: Dipole had already been assembled at Mitsubishi for magnet mapping, with Hall C work coordinator present at disassembly and Hall C electrical engineer present for initial magnet mapping – both at Tohoku

University's request)

HKS consists of many 15-metric tons parts that we assemble piece by piece. A special boom is used for fall protection tie off (we rotate the beam in Hall C). Here the boom is load tested.

ıal

3210-T2 Hazard ID Worksheet

Hazard Identification Worksheet

Task title: Move of HKS Date: 01-20-05

Location: Test Lab (Bldg 58), BCS Road, SURA Road, CEBAF Blvd., access roadway, Hall C (Bldg. 96)

Name: Walter Kellner, Bert Manzlak, Rolf Ent

Instructions:

Answer the following questions.

Questions with answers that indicate a hazard may exist should be discussed with your supervisor/manager/EH&S staff.

Resolutions and hazard mitigations must be noted in the block provided.

General Conditions	Keywords	Y/N	Resolutions
1. Are you familiar with the MSDS requirements for the materials being used and the required Personal Protective Equipment (PPE)?	Acids, flammable gases and solvents, heavy metals (lead, etc.), respirator, gloves, aprons, face shield, safety glasses, working with flammables	N	
2. Will you create dust, welding arcs, heat, excessive noise, ionizing/non-ionizing radiation, or chemical mixtures during the tasks?	Welding grinding, painting, x-rays, respirator, gloves, RF, lasers, chemicals, epoxies	N	
3. Are there any fire or explosive hazards associated with the task or likely to develop because of the task?	Painting, welding, grinding, brazing, mixing chemicals, battery charging	N	
4. Could the task create headaches, breathing problems, or dizziness from odors, etc.?	Motor exhaust, painting, ozone, solvents, acids, bases, chemicals, portable heaters	N	

Tefferson Lab mas Jefferson National Accelerator Facility

EH&S Manual 3210-T2 Hazard ID Worksheet

I nomas Jerierson National Accelerator Pacinty			
5. Is the task performed where limited entry, egress, or poor ventilation exists?	Confined space, manholes, pits, tanks	N	
6. Does the task require compressed, liquefied, or noxious gases?	Cryogenics, nitrogen, helium, argon, carbon monoxide	N	
7. Does the task require work in areas or with materials subject to temperature extremes?	Welding, soldering, brazing, cryogenics, resistive heating	N	
8. Does the task involve the use of fork trucks, hoists, or cranes?	Man lifts, subcontractors, rentals, slings, rigging	Y	See Worksheet Item 1
9. Does the task involve the use of powered hand tools?	Drills, saws, PPE, GFCI, power activated tools	N	
10. Does the work involve the risk of electrical shock or other forms of hazardous energy?	LOTO, compressed gases, lasers, power supplies, pressure, cryogenics	N	
11. Does the task involve working above or below floor level?	ladders, scaffolds, ODH, fall protection, confined space	Y	See Worksheet Item 2
12. Does the task involve lifting, pulling, pushing, or carrying heavy objects, or repetitive motion?	posture, back injury, twisting, fork lifts, cranes	Y	See Worksheet Item 3
13. Does the task involve work with pressurized or vacuum vessels?	resistive heaters, GFCI, pressure relief, tanks, containers	N	
14. Does the task require any permits?	TOSP, RWP, FHWP, confined space, Electrical Service Work Permit	N	
15. Does the task require specialized training?	Subcontractors, scaffold, man lift, confined space	Y	See Worksheet Item 4
16. Will waste products require special handling or disposal requirements?	chemicals, by products, discharges to sewer or ground, HRSD	N	
17. Any other hazards we may have overlooked with this list?		N	

3210-T2 Hazard ID Worksheet

Task title: Move of HKS

Date: 01-20-05

This worksheet is intended as just a starting point. Having identified the hazards associated with this task, next review the associated guidance in the EH&S Manual and develop procedures and controls tailored to the work.

Task title: Move of HKS

Date: 01-20-05

Cause	Hazard	Mitigation – Administration	Mitigation – Engineering	Risk Code
Hazard Identification Worksheet # 08 Item 1 Does the task involve the use of fork trucks, hoists, or cranes?	Struck-by falling objects Property Damage	 Authorized and trained personnel Guidance in JLab EH&S Manual Chapters: 6140 - Cranes and Hoists, 6145 - Forklifts, 6147 - Aerial Work Platforms 	Select certified and inspected material handling equipment, also includes: transport vehicle and trailer.	(B – III) 2
Hazard Identication Worksheet # 11 Item 2 Does the task involve working above or below floor level?	Fall Property Damage	 Authorized and trained personnel Guidance in JLab EH&S Manual Chapters: 6131 Trip and Fall Protection 6147 	Authorized and inspected boom.	(B – III) 2

3210-T2 Hazard ID Worksheet

Cause	Hazard	Mitigation – Administration	Mitigation – Engineering	Risk Code
Hazard Identication Worksheet # 12 Item 3 Does the task involve lifting, pulling, pushing, or carrying heavy objects, or repetitive motion?	Musculo - skeletal injury Property Damage	 Authorized and trained personnel Guidance in JLab EH&S Manual Chapters: 6140 6145 6147 	Select certified and inspected material handling equipment, also to include: transport vehicle and trailer.	(A – III) 1
Hazard Identification Worksheet #15 Item 4 Does the task require specialized training?	Being uninformed of the daily work environment Property Damage	 Read and sign the Hall C Conduct of Operations (COO) for HKS Installation SAF 112 Hall C EH&S Awareness Training 	None	(A – III) 1

3210-T3 Task Hazard Analysis Worksheet

Task Hazard Analysis Worksheet

Date: 01-20-05 Division Task Number: THA-PHY-05-001 Frequency of Use: Once

Task Title: Move of HKS
Prepared by: Bert Manzlak, Walter Kellner, Rolf Ent
Reviewed by: Manny Nevarez and Suresh Chandra
Approved by: Dennis Skopik

Sequence of Job Steps	Potential Hazards	Safe Procedures / Practices/Controls	Risk Code
Disassemble HKS in <15 metric tons pieces in Test Lab.	Pieces fall off crane, personnel fall hazards	A. use of proper torque settings and slings B. two people oversight	B - III 2
		C. tie off on existing authorized boom (also used during the assembly in Test Lab)	
		D. Hall C work coordinator's daily planning meeting at 8 am, and a task specific meeting with Hall C technicians before each job assignment.	
2. Transportation of	Pieces slide off	A. Use proper rigging on trailer	A - III
pieces to Hall C	trailer	B. Use of commercial trucker straps (available in Hall C)	1
		C. Personnel appropriately trained for rigging job	
3. Temporarily stacking of pieces	Blocks stacked improperly	A. Use and dedicated person stacking pieces	B - III
in Hall C.	(without paying attention to center of gravitation)	B. Two people oversight	2
		Continued on next page	

Jefferson Lab

EH&S Manual

3210-T3 Task Hazard Analysis Worksheet

Sequence of Job Steps	Potential Hazards	Safe Procedures / Practices/Controls	Risk Code
Continued from previous page		C) Hall C work coordinator's daily planning meeting at 8 am, and a task specific meeting with Hall C technicians before each job assignment.	
4. Assemble HMS magnet in Hall C	Pieces fall of crane, personnel fall	A. use of proper torque settings and slings	B - III
	hazards	B. Two people oversight	2
		C. tie off on existing authorized boom (also used during the assembly in Test Lab)	
		D. Hall C work coordinator's daily planning meeting (8 am), and a task specific meeting with Hall C technicians before each job assignment.	

Division Task Number: THA - PHY - 05 - 001

Hall Leader

Hall Work Coordinator

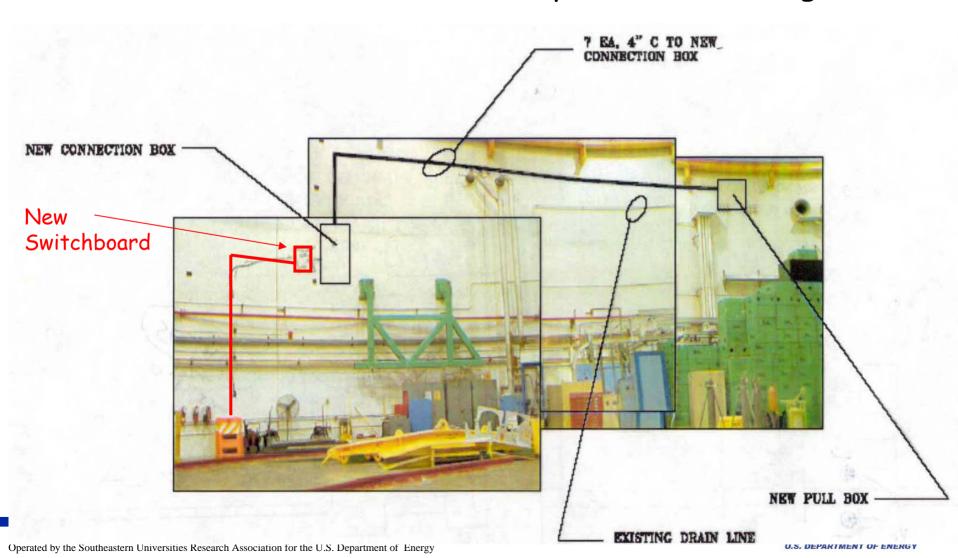
JLab Material Handling
Safety Representative

E² RC Member

Division EH&S

Division Safety Officer

Rolf Ent
Walter Kellner


Manny Nevarez
Suresh Chandra

Bert Manzlak
Dennis Skopik

2000 2000 1-27-05
2000 1-27-05
Europile Ulandon
1-27-05
1/27/05

Task: Installation of AC power for HKS Power Supply

Note: Related earlier task is Installation of 2MW 480A Feeder in Hall C (Subcontracted by Facilities Management)

EH&S Manual 3210-T2 Hazard ID Worksheet

Hazard Identification Worksheet

Task title: Installation of AC power for HKS power supply Date: 1/26/05

Location: Hall C

Name: Bill Vulcan Co-workers: Accelerator Electricians

Instructions: Answer the following questions: Questions with answer that indicate a hazard may exist should be discussed with your supergion/manager/EH&S staff

General Conditions	ed. Keywords	Y/N	Resolutions
l. Are you familiar with the MSDS requirements for the materials	acids, flammable gases and solvents, heavy metals	N	
being used and the required Personal Protective Equipment (PPE)?	(lead, etc.), respirator, gloves, aprons, face shield, safety glasses, working with flammables		
2. Will you create dust, welding arcs, heat, excessive noise, onizing/non-ionizing radiation, or chemical mixtures during the asks?	welding grinding, painting, x-rays, respirator, gloves, RF, lasers, chemicals, epoxies	Y	Earplugs
3. Are there any fire or explosive hazards associated with the task or likely to develop because of the task?	painting, welding, grinding, brazing, mixing chemicals, battery charging	N	
4. Could the task create headaches, breathing problems, or dizziness from odors, etc.?	Motor exhaust, painting, ozone, solvents, acids, bases, chemicals, portable heaters	N	
5. Is the task performed where limited entry, egress, or poor ventilation exists?	confined space, manholes, pits, tanks	N	
6. Does the task require compressed, liquefied, or noxious gases?	cryogenics, nitrogen, helium, argon, carbon monoxide	N	
7. Does the task require work in areas or with materials subject to temperature extremes?	welding, soldering, brazing, cryogenics, resistive heating	N	
8. Does the task involve the use of fork trucks, hoists, or cranes?	manlifts, subcontractors, rentals, slings, rigging	Y	See analysis item 1
9. Does the task involve the use of powered hand tools?	drills, saws, PPE, GFCI, power activated tools	Y	See analysis item 2
10. Does the work involve the risk of electrical shock or other forms of hazardous energy?	LOTO, compressed gases, lasers, power supplies, pressure, cryogenics	Y	See analysis item 3
11. Does the task involve working above or below floor level?	ladders, scaffolds, ODH, fall protection, confined space	Y	See analysis item 4
12. Does the task involve lifting, pulling, pushing, or carrying heavy objects, or repetitive motion?	posture, back injury, twisting, fork lifts, cranes	Y	See analysis item 5
13. Does the task involve work with pressurized or vacuum vessels?	resistive heaters, GFCI, pressure relief, tanks, containers	N	
14. Does the task require any permits?	TOSP, RWP, FHWP, confined space, Electrical Service Work Permit	N	
15. Does the task require specialized training?	subcontractors, scaffold, manlift, confined space	Y	LOTO,Manlift,Halle,ODH,RW1
16. Will waste products require special handling or disposal requirements?	chemicals, by products, discharges to sewer or ground, HRSD	N	
17. Any other hazards we may have overlooked with this list?		N	

rev: August 1, 2003

3210-T3Task Hazard AnalysisWorksheet

Task Hazard Analysis Worksheet

Bate: 1/26.05 Bruision Task Number____ Prequency of use: once

Task location: Hall C	Task title: Installation of power for HKS
Division: Prysics	Frepared by: Rolf Ent. Bill Wikan, Bert. Idanzisk
Department: Hall C	Resiewed by: Jonathan Creel, Steve Christo
Supervisor: Rolf Ent	Approved by: Dermis Shopak
Standard Requirement: ILGLado	lers Electrical

Sequence of Job Steps	Potential Hazards	Safe Procedures/Practices/Controls	Risk Code
Install Switchboard on wall for HKS power supply.	Material handling.Conduit falling from high places	Will be LTT. Cordon of area. Two people oversight.	C1 Class 1
2.Tasks.irvolves powertook	Curts	Workers are experienced Usinghand took.	A2 Class 0
3.Risk of shock.	Arc flash hazard Could be dangerous if connected wrong.	Circuit will be locked off (LOTO) at the transformer.	Al Class 0
4.Working on ladder or aerial lifts	Falling	Workers are trained working in aerial lifts	B1 Class 0
5. Carry heavy material.	Back injunies, posture traisting	Workers are trained for lifting objects	Bl ClassO

Summary

- · HKS Installation Hall C is a 4+ Month Installation
- Series of Readiness Reviews Locate Long-Term Issues & Concerns, both physics and EH&S related; involve EH&S personnel as early (and often) as possible
- · Engineering controls always get the emphasis
- Specific new equipment gets dedicated safety review (not relevant in this HKS case)
- Series of organizational meetings between accelerator and physics division to prepare for large installation and define jobs and responsibilities
- Specific tasks such as HKS move have been well organized far in advance (choice to have "lego"-system, specific job training for coordinators in Japan)
- Responsible personnel (+EH&S personnel) perform Task Hazard Analysis for specific, potentially unsafe, tasks
- · Strategy is to get all jobs to lowest-class level possible

- QUESTIONS -

THANK YOU

